Fibonacci Check-up |
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) |
Total Submission(s): 42 Accepted Submission(s): 27 |
Problem Description Every ALPC has his own alpc-number just like alpc12, alpc55, alpc62 etc. As more and more fresh man join us. How to number them? And how to avoid their alpc-number conflicted? Of course, we can number them one by one, but that’s too bored! So ALPCs use another method called Fibonacci Check-up in spite of collision. First you should multiply all digit of your studying number to get a number n (maybe huge). Then use Fibonacci Check-up! Fibonacci sequence is well-known to everyone. People define Fibonacci sequence as follows: F(0) = 0, F(1) = 1. F(n) = F(n-1) + F(n-2), n>=2. It’s easy for us to calculate F(n) mod m. But in this method we make the problem has more challenge. We calculate the formula , is the combination number. The answer mod m (the total number of alpc team members) is just your alpc-number. |
Input First line is the testcase T. Following T lines, each line is two integers n, m ( 0<= n <= 10^9, 1 <= m <= 30000 ) |
Output Output the alpc-number. |
Sample Input 21 300002 30000 |
Sample Output 13 |
Source 2009 Multi-University Training Contest 5 - Host by NUDT |
Recommend gaojie |
/*题意:给出你公式,让你求( 求和C(k,n)F(k) )%m初步思路:没思路,先打表 得到: 0 1 3 8 21 55 144 377 987 2584 6765 17711 46368 121393 317811 832040 2178309 5702887 14930352 39088169 102334155 能得出来,G(0)=0; G(1)=1; G(n)=3*G(n-1)-G(n-2); 然后用矩阵快速幂求出结果 最重要的构造矩阵还没学线性代数的我只能试着推出来: |G(n) G(n-1)| | 3 1 | | 0 0 |*| -1 0 |#总结:板没调好,WA了两发 */#includeusing namespace std;int n,mod;int t;/********************************矩阵模板**********************************/class Matrix { public: int a[3][3]; int n; void init(int x) { memset(a,0,sizeof(a)); if(x){ a[0][0]=3; a[0][1]=1; a[1][0]=-1; a[1][1]=0; }else{ a[0][0]=1; a[0][1]=0; a[1][0]=0; a[1][1]=0; } n=2; } Matrix operator +(Matrix b) { Matrix c; c.n = n; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) c.a[i][j] = (a[i][j] + b.a[i][j]) % mod; return c; } Matrix operator +(int x) { Matrix c = *this; for (int i = 0; i < n; i++) c.a[i][i] += x; return c; } Matrix operator *(Matrix b) { Matrix p; p.n = b.n; memset(p.a,0,sizeof p.a); for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) for (int k = 0; k < n; k++) p.a[i][j] = (p.a[i][j] + (a[i][k]*b.a[k][j])%mod) % mod; return p; } Matrix power_1(int t) { Matrix ans,p = *this; ans = p; while (t) { if (t & 1) ans=ans*p; p = p*p; t >>= 1; } return ans; } Matrix power_2(Matrix a,Matrix b,int x){ while(x){ if(x&1){ b=a*b; } a=a*a; x>>=1; } return b; }};/********************************矩阵模板**********************************/Matrix unit,init;int main(){ // freopen("in.txt","r",stdin); scanf("%d",&t); while(t--){ scanf("%d%d",&n,&mod); unit.init(0);//存放G(n)的矩阵 init.init(1);//子矩阵 if(n==0){ printf("0\n"); continue; }else if(n==1){ printf("%d\n",1%mod); continue; } init=init.power_1(n-2); unit=unit*init; // cout< <
/*附上打表小程序*/#includeusing namespace std;long long Sums(long long n,long long k) //函数定义{ long long sum = 0,N=1,K=1,M=1; if(k > 0 && k<=n) { for(long long i = 1;i<=n;i++) { N = N * i; } for(long long j = 1;j <= k;j++) { K = K * j; } for(long long h = 1;h <= n-k;h++) { M = M * h; } sum=N/(K*M); return sum; } else return 0;}int main(){ //freopen("in.txt","r",stdin); long long f[25]; f[0]=0; f[1]=1; for(long long i=2;i<=20;i++) f[i]=f[i-1]+f[i-2]; for(long long n=0;n<=20;n++){ long long cur=0; for(long long k=0;k<=n;k++){ long long cnk=Sums(n,k); //cout<<"C("< <<","< <<")="< <